Publications by Author: Aouadj, Wafa

2021
Aouadj W, Abdessemed M-R, Seghir R. Discrete Large-scale Multi-Objective Teaching-Learning-Based Optimization Algorithm. 4th International Conference on Networking, Information Systems & Security [Internet]. 2021. Publisher's VersionAbstract

This paper presents a teaching-learning-based optimization algorithm for discrete large-scale multi-objective problems (DLM-TLBO). Unlike the previous variants, the learning strategy used by each individual and the acquired knowledge are defined based on its level. The proposed approach is used to solve a bi-objective object clustering task (B-OCT) in a swarm robotic system, as a case study. The simple robots have as mission the gathering of a number of objects distributed randomly, while respecting two objectives: maximizing the clustering quality, and minimizing the energy consumed by these robots. The simulation results of the proposed algorithm are compared to those obtained by the well-known algorithm NSGA-II. The results show the superiority of the proposed DLM-TLBO in terms of the quality of the obtained Pareto front approximation and convergence speed.

Aouadj W, Abdessemed M-R. A Reliable Behavioral Model: Optimizing Energy Consumption and Object Clustering Quality by Naïve Robots. International Journal of Swarm Intelligence Research (IJSIR) [Internet]. 2021;12 (4). Publisher's VersionAbstract

This study concerns a swarm of autonomous reactive mobile robots, qualified of naïve because of their simple constitution, having the mission of gathering objects randomly distributed while respecting two contradictory objectives: maximizing quality of the emergent heap-formation and minimizing energy consumed by aforesaid robots. This problem poses two challenges: it is a multi-objective optimization problem and it is a hard problem. To solve it, one of renowned multi-objective evolutionary algorithms is used. Obtained solution, via a simulation process, unveils a close relationship between behavioral-rules and consumed energy; it represents the sought behavioral model, optimizing the grouping quality and energy consumption. Its reliability is shown by evaluating its robustness, scalability, and flexibility. Also, it is compared with a single-objective behavioral model. Results' analysis proves its high robustness, its superiority in terms of scalability and flexibility, and its longevity measured based on the activity time of the robotic system that it integrates.