Skip to main content

Advertisement

Log in

An automated microemboli detection and classification system using backscatter RF signals and differential evolution

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Embolic phenomena, whether air or particulate emboli, can induce immediate damages like heart attack or ischemic stroke. Embolus composition (gaseous or particulate matter) is vital in predicting clinically significant complications. Embolus detection using Doppler methods have shown their limits to differentiate solid and gaseous embolus. Radio-frequency (RF) ultrasound signals backscattered by the emboli contain additional information on the embolus in comparison to the traditionally used Doppler signals. Gaseous bubbles show a nonlinear behavior under specific conditions of the ultrasound excitation wave, this nonlinear behavior is exploited to differentiate solid from gaseous microemboli. In order to verify the usefulness of RF ultrasound signal processing in the detection and classification of microemboli, an in vitro set-up is developed. Sonovue micro bubbles are exploited to mimic the acoustic behavior of gaseous emboli. They are injected at two different concentrations (0.025 and 0.05 µl/ml) in a nonrecirculating flow phantom containing a tube of 0.8 mm in diameter. The tissue mimicking material surrounding the tube is chosen to imitate the acoustic behavior of solid emboli. Both gaseous and solid emboli are imaged using an Anthares ultrasound scanner with a probe emitting at a transmit frequency of 1.82 MHz and at two mechanical indices (MI) 0.2 and 0.6. We propose in this experimental study to exploit discrete wavelet transform and a dimensionality reduction algorithm based on differential evolution technique in the analysis and the characterization of the backscattered RF ultrasound signals from the emboli. Several features are evaluated from the detail coefficients. It should be noted that the features used in this study are the same used in the paper by Aydin et al. These all features are used as inputs to the classification models without using feature selection method. Then we perform feature selection using differential evolution algorithm with support vector machines classifier. The experimental results show clearly that our proposed method achieves better average classification rates compared to the results obtained in a previous study using also the same backscatter RF signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Molloy J, Markus HS (1999) Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke 30(7):1440–1443

    Article  CAS  PubMed  Google Scholar 

  2. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    Article  CAS  PubMed  Google Scholar 

  3. Pugsley W, Klinger L, Paschalis C, Treasure T, Harrison M, Newman S (1994) The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke 25(7):1393–1399

    Article  CAS  PubMed  Google Scholar 

  4. Ackerstaff RG, Jansen C, Moll FL (1996) Carotid endarterectomy and intraoperative emboli detection. Echocardiography 13(5):543–550

    Article  Google Scholar 

  5. Georgiadis D, Grosset DG, Kelman A, Faichney A, Lees KR (1994) Prevalence and characteristics of intracranial microemboli signals in patients with different types of prosthetic cardiac valves. Stroke 25(3):587–592

    Article  CAS  PubMed  Google Scholar 

  6. Markus H, Israel D, Brown MM, Loh A, Buckenham T, Clifton A (1993) Microscopic air embolism during cerebral angiography and strategies for its avoidance. Lancet 341(8848):784–787

    Article  CAS  PubMed  Google Scholar 

  7. Aydin N, Marvasti F, Markus HS (2004) Embolic Doppler ultrasound signal detection using discrete wavelet transform. IEEE Trans Inf Technol Biomed 8(2):182–190

  8. Aydin N, Padayachee S, Markus HS (1999) The use of the wavelet transform to describe embolic signals. Ultrasound Med Biol 25(6):953–958

    Article  CAS  PubMed  Google Scholar 

  9. Krongold BS, Sayeed AM, Moehring M, Ritcey J, Spencer MP, Jones DL (1999) Time-scale detection of microemboli in flowing blood with Doppler ultrasound. IEEE Trans Biomed Eng 46(9):1081–1089

    Article  CAS  PubMed  Google Scholar 

  10. Girault JM, Kouamé D, Ouahabi A, Patat F (2000) Micro-emboli detection: an ultrasound Doppler signal processing viewpoint. IEEE Trans Biomed Eng 47(11):1431–1439

    Article  CAS  PubMed  Google Scholar 

  11. Smith JL, Evans DH, Bell PR, Naylor AR (1998) A comparison of four methods for distinguishing Doppler signals from gaseous and particulate emboli. Stroke 29(6):1133–1138

    Article  CAS  PubMed  Google Scholar 

  12. Darbellay GA, Duff R, Vesin JM, Despland PA, Droste DW, Molina C et al (2004) Solid or gaseous circulating brain emboli: are they separable by transcranial ultrasound? J Cereb Blood Flow Metab 24(8):860–868

    Article  PubMed  Google Scholar 

  13. Benoudjit N, Ferroudji K, Bahaz M, Bouakaz A (2011) In vitro microemboli classification using neural network models and RF signals. Ultrasonics 51(3):247–252

    Article  CAS  PubMed  Google Scholar 

  14. Ferroudji K, Benoudjit N, Bahaz M, Bouakaz A (2011) Feature selection based on RF signals and KNN Rule: Application to microemboli classification. In: 2011 7th international workshop on systems, signal processing and their applications (WOSSPA) (pp 251–254). IEEE

  15. Russell D, Brucher R (2002) Online automatic discrimination between solid and gaseous cerebral microemboli with the first multifrequency transcranial Doppler. Stroke, 33(8):1975–1980

    Article  CAS  PubMed  Google Scholar 

  16. Cowe J, Gittins J, Naylor AR, Evans DH (2005) RF signals provide additional information on embolic events recorded during TCD monitoring. Ultrasound Med Biol 31(5):613–623

    Article  PubMed  Google Scholar 

  17. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A, Benítez JM, Herrera F (2014) A review of microarray datasets and applied feature selection methods. Inf Sci 282:111–135

    Article  Google Scholar 

  18. Khushaba RN, Al-Ani A, Al-Jumaily A (2009) Feature subset selection using differential evolution. In: Advances in neuro-information processing. Springer, Berlin Heidelberg, pp 103–110

  19. Khushaba RN, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38(9):11515–11526

    Article  Google Scholar 

  20. Tadjudin S, Landgrebe DA (1999) Covariance estimation with limited training samples. IEEE Trans Geosci Remote Sens 37(4):2113–2118

    Article  Google Scholar 

  21. Bishop CM (2006) Pattern recognition and machine learning, vol 128. Springer, New York, pp 225–338

  22. Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26(5):1007–1011

    Article  Google Scholar 

  23. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  24. Breiman L, Spector P (1992) Submodel selection and evaluation in regression. The X-random case. Int Stat Rev/revue internationale de Statistique 60:291–319

    Google Scholar 

  25. Strang G, Nguyen T (1996) Wavelets and filter banks. SIAM

  26. Misiti M, Misiti Y, Oppenheim G, Poggi JM (1997) Wavelet toolbox. Matlab User’s Guide

  27. Ferroudji K, Benoudjit N, Bahaz M, Bouakaz A (2012) Selection of a suitable mother wavelet for microemboli classification using SVM and RF signals. In: 2012 24th international conference on microelectronics (ICM) (pp 1–4). IEEE

  28. Rossi F, Lendasse A, François D, Wertz V, Verleysen M (2006) Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemom Intell Lab Syst 80(2):215–226

    Article  CAS  Google Scholar 

  29. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  Google Scholar 

  30. Boashash B (1992) Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proc IEEE 80(4):540–568

    Article  Google Scholar 

  31. Cortes C, Vapnik V (1995) Support-vector networks. Mach learn 20(3):273–297

    Google Scholar 

  32. Tavakolan M, Yong X, Zhang X, Menon C (2016) Classification scheme for arm motor imagery. J Med Biol Eng 36(1):12–21

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang L (2005) Support vector machines: theory and applications, vol. 177. Springer, New York

  34. Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425

    Article  PubMed  Google Scholar 

  35. Storn R (2008) Differential evolution research–trends and open questions. In: Advances in differential evolution. Springer, Berlin Heidelberg, pp 1–31

  36. Palanchon P, Bouakaz A, Klein J, De Jong N (2005) Multifrequency transducer for microemboli classification and sizing. IEEE Trans Biomed Eng 52(12):2087–2092

    Article  PubMed  Google Scholar 

  37. SonoVue ® microbubbles. Bracco Research, Geneva

  38. Piron J, Escoffre JM, Kaddur K, Novell A, Bouakaz A (2010) Enhanced gene transfection using ultrasound and Vevo Micromarker® microbubbles: microbubbles-assisted ultrasound and gene delivery. In: 2010 IEEE ultrasonics symposium (IUS) (pp 1586–1589). IEEE

Download references

Acknowledgements

The authors would like to acknowledge the support of PHC Tassili France-Algérie 2014 (14 MDU 909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Ferroudji.

Ethics declarations

Conflicts of interest

The authors state that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferroudji, K., Benoudjit, N. & Bouakaz, A. An automated microemboli detection and classification system using backscatter RF signals and differential evolution. Australas Phys Eng Sci Med 40, 85–99 (2017). https://doi.org/10.1007/s13246-016-0512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0512-4

Keywords

Navigation