Skip to main content

Advertisement

Log in

Deoxypodophyllotoxin, a semi-synthetic compound from Dysosma versipellis, induces selective cell death in human breast cancer cell lines

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Biologically active compounds isolated from medicinal herbs have been the center of interest for researchers to investigate their possible effects and mechanisms through which they exert their action. In the current study, we investigated the antiproliferative effect and the mechanism of action of deoxypodophyllotoxin, a semi-synthetic compound derived from the extract of a Chinese herbal medicine, Dysosma versipellis (Hance) M. Cheng ex Ying (Berberidaceae). The study was conducted on MCF-7 and MDA-MB-231 breast cancer cell lines. The antiproliferative effect of deoxypodophyllotoxin was assessed by the Cell Counting Kit-8 assay. Flow cytometry, Annexin V/PI, mitochondrial membrane potential, caspase inhibition assays, and western blot analysis were performed to detect, explore, and assess the antiproliferative effect of deoxypodophyllotoxin. Our data revealed that, deoxypodophyllotoxin treatment resulted in a dose-responsive inhibition of MCF-7 and MDA-MB-231 cell growth with very low IC50 (10.91 and 20.02 nM, respectively). It disrupted the cytoskeleton and induced significant cell cycle arrest at the G2/M phase in both cell lines through the interference with cell cycle regulatory proteins: cyclin B1, cdc25c, and CDK1. In MCF-7 cells, cell cycle inhibition was associated with apoptosis, which was caspase-dependent and involved elevation of Bax protein and a cleavage of PARP, this finding along with disruption of mitochondrial membrane potential, confirmed the involvement of intrinsic pathway in deoxypodophyllotoxin-induced apoptosis in MCF-7 cells. However, in MDA-MB-231 cells, deoxypodophyllotoxin is cytostatic and significantly suppresses proliferation by cell cycle arrest at G2/M phase without apoptotic induction. Such an activity of deoxypodophyllotoxin could be expected to spare normal tissues from toxic side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adlercreutz H (2002) Phyto-oestrogens and cancer. Lancet Oncol 3:364–373

    Article  PubMed  Google Scholar 

  • American Type Culture Collection (2015) MDA-MB-231 (ATCC® HTB-26™). http://www.atcc.org/products/all/HTB-26.aspx#culturemethod Accessed 25 Dec 2015

  • Arigony AL, de Oliveira IM, Machado M, Bordin DL, Bergter L, Pra D, Henriques JA (2013) The influence of micronutrients in cell culture: a reflection on viability and genomic stability. Biomed Res Int 2013:597282

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnal I, Wade RH (1995) How does taxol stabilize microtubules? Curr Biol 5:900–908

    Article  CAS  PubMed  Google Scholar 

  • Benzina S, Harquail J, Jean S, Beauregard AP, Colquhoun CD, Carroll M, Bos A, Gray CA, Robichaud GA (2015) Deoxypodophyllotoxin isolated from Juniperus communis induces apoptosis in breast cancer cells. Anticancer Agents Med Chem 15:79–88

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski A, Debi A (1999) Phytoestrogens: the “natural” selective estrogen receptor modulators? Eur J Obstet Gynecol Reprod Biol 85:47–51

    Article  CAS  PubMed  Google Scholar 

  • Call JA, Eckhardt SG, Camidge DR (2008) Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol 9:1002–1011

    Article  CAS  PubMed  Google Scholar 

  • Chow LW, Loo WT (2003) The differential effects of cyclophosphamide, epirubicin and 5-fluorouracil on apoptotic marker (CPP-32), pro-apoptotic protein (p21(WAF-1)) and anti-apoptotic protein (bcl-2) in breast cancer cells. Breast Cancer Res Treat 80:239–244

    Article  CAS  PubMed  Google Scholar 

  • Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5’,6,6’-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45

    Article  CAS  PubMed  Google Scholar 

  • Dickson MA, Schwartz GK (2009) Development of cell-cycle inhibitors for cancer therapy. Curr Oncol 16:36–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duriez PJ, Shah GM (1997) Cleavage of poly (ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337–349

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2012) Cancer incidence and mortality worldwide, GLOBOCAN 2012 v1.0. IARC CancerBase 2012; No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. http://globocan.iarc.fr Accessed 11 Dec 2015

  • Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  • Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW (1991) cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67:197–211

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Guerram M, Jiang ZZ, Sun L, Zhu X, Zhang LY (2015) Antineoplastic effects of deoxypodophyllotoxin, a potent cytotoxic agent of plant origin, on glioblastoma U-87 MG and SF126 cells. Pharmacol Rep 67:245–252

    Article  CAS  PubMed  Google Scholar 

  • Guo X (1992) Toxic herbs drugs dictionary. Tianjin Science and Technology and Tanslation Publishing, Tianjin, pp 14–16

    Google Scholar 

  • Hirsch T, Susin SA, Marzo I, Marchetti P, Zamzami N, Kroemer G (1998) Mitochondrial permeability transition in apoptosis and necrosis. Cell Biol Toxicol 14:141–145

    Article  CAS  PubMed  Google Scholar 

  • Holloway SL, Glotzer M, King RW, Murray AW (1993) Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73:1393–1402

    Article  CAS  PubMed  Google Scholar 

  • Ikeda R, Nagao T, Okabe H, Nakano Y, Matsunaga H, Katano M, Mori M (1998) Antiproliferative constituents in umbelliferae plants. III. Constituents in the root and the ground part of Anthriscus sylvestris Hoffm. Chem Pharm Bull 46:871–874

    Article  CAS  PubMed  Google Scholar 

  • Jiang RW, Zhou JR, Hon PM, Li SL, Zhou Y, Li LL, Ye WC, Xu HX, Shaw PC, But PP (2007) Lignans from Dysosma versipellis with inhibitory effects on prostate cancer cell lines. J Nat Prod 70:283–286

    Article  CAS  PubMed  Google Scholar 

  • Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  PubMed  Google Scholar 

  • Juang SH, Pan WY, Kuo CC, Liou JP, Hung YM, Chen LT, Hsieh HP, Chang JY (2004) A novel bis-benzylidenecyclopentanone derivative, BPR0Y007, inducing a rapid caspase activation involving upregulation of Fas (CD95/APO-1) and wild-type p53 in human oral epidermoid carcinoma cells. Biochem Pharmacol 68:293–303

    Article  CAS  PubMed  Google Scholar 

  • Jung CH, Kim H, Ahn J, Jung SK, Um MY, Son KH, Kim TW, Ha TY (2013) Anthricin Isolated from Anthriscus sylvestris (L.) Hoffm. Inhibits the Growth of Breast Cancer Cells by Inhibiting Akt/mTOR Signaling, and Its Apoptotic Effects Are Enhanced by Autophagy Inhibition. Evid Based Complement Alternat Med 2013:385219

    PubMed  PubMed Central  Google Scholar 

  • Khaled M, Jiang ZZ, Zhang LY (2013) Deoxypodophyllotoxin: A promising therapeutic agent from herbal medicine. J Ethnopharmacol 149:24–34

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Xiao Z (2003) Lignans in treatment of cancer and other diseases†. Phytochem Rev 2:341–362

    Article  CAS  Google Scholar 

  • Liu MJ, Wang Z, Li HX, Wu RC, Liu YZ, Wu QY (2004) Mitochondrial dysfunction as an early event in the process of apoptosis induced by woodfordin I in human leukemia K562 cells. Toxicol Appl Pharmacol 194:141–155

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641

    Article  CAS  PubMed  Google Scholar 

  • McDonald ER, El-Deiry WS (2000) Cell cycle control as a basis for cancer drug development (Review). Int J Oncol 16:871–886

    CAS  PubMed  Google Scholar 

  • McGuire WL, Horwitz KB, Zava DT, Garola RE, Chamness GC (1978) Hormones in breast cancer: update 1978. Metabolism 27:487–501

    Article  CAS  PubMed  Google Scholar 

  • Messina MJ, Loprinzi CL (2001) Soy for breast cancer survivors: a critical review of the literature. J Nutr 131:3095S–3108S

    CAS  PubMed  Google Scholar 

  • Morley KL, Ferguson PJ, Koropatnick J (2007) Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett 251:168–178

    Article  CAS  PubMed  Google Scholar 

  • Muto N, Tomokuni T, Haramoto M, Tatemoto H, Nakanishi T, Inatomi Y, Murata H, Inada A (2008) Isolation of apoptosis- and differentiation-inducing substances toward human promyelocytic leukemia HL-60 cells from leaves of Juniperus taxifolia. Biosci Biotechnol Biochem 72:477–484

    Article  CAS  PubMed  Google Scholar 

  • Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  CAS  PubMed  Google Scholar 

  • Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303–313

    Article  CAS  PubMed  Google Scholar 

  • Roulland E, Magiatis P, Arimondo P, Bertounesque E, Monneret C (2002) Hemi-synthesis and biological activity of new analogues of podophyllotoxin. Bioorg Med Chem 10:3463–3471

    Article  CAS  PubMed  Google Scholar 

  • Rowinsky EK, Donehower RC (1991) Taxol: twenty years later, the story unfolds. J Natl Cancer Inst 83:1778–1781

    Article  CAS  PubMed  Google Scholar 

  • Sheikh MS, Garcia M, Pujol P, Fontana JA, Rochefort H (1994) Why are estrogen-receptor-negative breast cancers more aggressive than the estrogen-receptor-positive breast cancers? Invasion Metastasis 14:329–336

    PubMed  Google Scholar 

  • Shin SY, Yong Y, Kim CG, Lee YH, Lim Y (2010) Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett 287:231–239

    Article  CAS  PubMed  Google Scholar 

  • Slee EA, Zhu H, Chow SC, MacFarlane M, Nicholson DW, Cohen GM (1996) Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J 315:21–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A 88:3671–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler WM, Ratain MJ (2000) Development of target-based antineoplastic agents. Invest New Drugs 18:7–16

    Article  CAS  PubMed  Google Scholar 

  • Thorpe SM, Rose C, Rasmussen BB, Mouridsen HT, Bayer T, Keiding N (1987) Prognostic value of steroid hormone receptors: multivariate analysis of systemically untreated patients with node negative primary breast cancer. Cancer Res 47:6126–6133

    CAS  PubMed  Google Scholar 

  • Tong WG, Ding XZ, Adrian TE (2002) The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res Commun 296:942–948

    Article  CAS  PubMed  Google Scholar 

  • van Leuken R, Clijsters L, Wolthuis R (2008) To cell cycle, swing the APC/C. Biochim Biophys Acta 1786:49–59

    PubMed  Google Scholar 

  • Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131–149

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Xie Y (2004) China species red list, vol 1. Higher Education Press, Beijing, p 324

    Google Scholar 

  • Wang YR, Xu Y, Jiang ZZ, Guerram M, Wang B, Zhu X, Zhang LY (2015) Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in SGC-7901 cells and inhibits tumor growth in vivo. Molecules 20:1661–1675

    Article  PubMed  Google Scholar 

  • Yu PZ, Wang LP, Chen ZN (1991) A new podophyllotoxin-type lignan from dysosma versipellis var. tomentosa. J Nat Prod 54:1422–1424

    Article  CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G (1995a) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G (1995b) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181:1661–1672

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (81274146 to LZ), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD to LZ), the Fundamental Research Funds for the Central Universities (YD2014SK0002 to JZ) and 333 high level project of Jiangsu Province (BRA2014245 to LZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghania Belaaloui or Lu-Yong Zhang.

Ethics declarations

conflicts of interest

All authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaled, M., Belaaloui, G., Jiang, ZZ. et al. Deoxypodophyllotoxin, a semi-synthetic compound from Dysosma versipellis, induces selective cell death in human breast cancer cell lines. Med Chem Res 26, 1241–1258 (2017). https://doi.org/10.1007/s00044-017-1844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1844-7

Keywords

Navigation