Anisotropic Elastic Distortions of a Buried Dissociated Hexagonal Network of Dislocations in a Nickel Based Super Alloys

Article Preview

Abstract:

Nickel based super alloys are promising materials for high temperature structural applications because of their low density. The single grain super alloys are extremely creep resistant at high temperature, due to the fraction of Ni3Al based ' precipitates coherent with a Ni based  matrix [1, 3]. The cuboids group together and form semi-coherent interfaces after a long annealing at high temperature. The ' precipitate growths in nickel base super alloys often favor the parallelism of (111) planes between cubic dissimilar crystals [4]. In consequences, a hexagonal network of dislocations, that covers the hetero-interphase, is arranged by accommodation of the angular misfit between two semi coherent crystals ( ). In this work, the magnitude of the distortions is simulated as arising from a trigonal network of subsurface misfit dislocations partly dissociated in Shockley dislocations limiting intrinsic and /or extrinsic stacking faults. The results derived from a previous explicit formulation using double Fourier series [5]. Each harmonic term of the series depends on the anisotropic elastic constants and the thickness of each phase. The program built is in a double precision Fortran language and it shows the magnitude and the aspect of the distortions of the free surfaces when the dissociation change in the hetero-interphase. Also, the program has the advantage to fully apply to hetero-epitaxial systems, whatever is the thickness of the free surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

289-294

Citation:

Online since:

December 2009

Authors:

Export:

Price:

[1] R. Bonnet, A. Ati and D. David, On three-dimensional defects in the Ni3Al (γ ' ) phase identified by the computed imaging technique, Journal of Alloys and Compounds, Vol 188(1992) 198201.

DOI: 10.1016/0925-8388(92)90675-y

Google Scholar

[2] G. Bruno, G. Schumacher, H. Cavalcanti Pinto and C. Schulze, Measurement of the lattice misfit of the nickel-base superalloy SC16 by high-energy synchrotron radiation, Metallurgical and Materials Transactions A, Vol. 34 (2003) 193-197.

DOI: 10.1007/s11661-003-0321-8

Google Scholar

[3] A. Ati, Doctorate Thesis, USTHB Algiers, juin (1993).

Google Scholar

[4] J. Courbon and F. Louchet, On the Mechanisms of Formation of Superlattice Stacking Faults in L12 Precipitates Embedded in a F.C.C. Matrix, Physica Status Solidi (a) vol 137(1993) 417-428.

DOI: 10.1002/pssa.2211370214

Google Scholar

[5] T. Outtas, L. Adami, A. Derardja, S. Madani and R. Bonnet, Anisotropic elastic field of a thin bicrystal deformed by a biperiodic network of misfit dislocations, Phys. Stat. Sol. (a), Vol 188, 1041-1045, (2001).

DOI: 10.1002/1521-396x(200112)188:3<1041::aid-pssa1041>3.0.co;2-i

Google Scholar

[6] R. Bonnet, Evaluation of surface strain due to the reconstruction of atomically close-packed crystalline surfaces, Phys. Rev. B, Vol 61 (2000) 14059-14065.

DOI: 10.1103/physrevb.61.14059

Google Scholar

[7] A. Derardja, L. Adami, S. Benyoussef . and R. Bonnet, Anisotropie de la relaxation elastique d'un reseau biperiodique de dislocations: theorie et application aux bicristaux de semiconducteurs, Ann. Chim. Sci. Mat, Vol 29(4)(2004) 123-132.

DOI: 10.3166/acsm.29.4.123-132

Google Scholar

[8] H. Brune, H. Ro¨der, C. Boragno, and K. K. Brune, Strain relief at hexagonal-close-packed interfaces, Phys. Rev. B 49 (1994) 2997 - 3000.

DOI: 10.1103/physrevb.49.2997

Google Scholar

[9] M. Schmid , A. Biedermann, H. Stadler and P. Varga, Lattice mismatch dislocations in a preferentially sputtered alloy studied by scanning tunneling microscopy, Physical review letters Vol 69 (1992) 925-928.

DOI: 10.1103/physrevlett.69.925

Google Scholar

[10] M. Y. Gutkin and K. N. Romanov, K. N. Mikaelyan and I. A. Ovid'ko I. A., Generation and evolution of partial misfit dislocations and stacking faults in thin-film heterostructure, Physics of the solid State, Vol 43 (2001) 42-46.

DOI: 10.1134/1.1340184

Google Scholar

[11] T. Link, A. Epishin, M. Klaus, U. Bruckner and A. Reznicek , <100> Dislocations in nickel-base superalloys : Formation and role in creep deformation, Materials science & engineering. A Vol 405 (2005) 254-265.

DOI: 10.1016/j.msea.2005.06.001

Google Scholar

[12] J. Coelho, G. Patriarche, F. Glas, I. Sagnes and G. Saint-Girons, Dislocation networks adapted to order the growth of III-V semiconductor nanostructures, physica status solidi (c), Vol 2 (2005) 1933 - (1937).

DOI: 10.1002/pssc.200460528

Google Scholar

[13] B. A. Joyce, T. S. Jones and J. G. Belk, Reflection high-energy diffraction/scanning tunnelling microscopy study of InAs growth on the three low index orientations of GaAs: Twodimensional versus three-dimensional growth and strain relaxation, J. Vac. Sci. Techno. B, Vol 16 (1998).

DOI: 10.1116/1.590177

Google Scholar

[14] C. Gunther, J. Vrijmoeth, R. Q. Hwang and R. J. Behm, Strain Relaxation in Hexagonally Close-Packed Metal-Metal Interfaces, Phys. Rev. Lett. Vol 74 (1995) 754.

DOI: 10.1103/physrevlett.74.754

Google Scholar